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REVIEW ARTICLE

A review of assessment methods for cellular automata models
of land-use change and urban growth
Xiaohua Tonga and Yongjiu Feng a,b

aCollege of Surveying and Geo-Informatics, Tongji University, Shanghai, China; bSchool of Earth and
Environmental Sciences, The University of Queensland, Brisbane, Australia

ABSTRACT
Cellular automata (CA) models are in growing use for land-use
change simulation and future scenario prediction. It is necessary to
conduct model assessment that reports the quality of simulation
results and how well the models reproduce reliable spatial patterns.
Here, we review 347 CA articles published during 1999–2018 identi-
fied by a Scholar Google search using ‘cellular automata’, ‘land’ and
‘urban’ as keywords. Our review demonstrates that, during the past
two decades, 89% of the publications include model assessment
related to dataset, procedure and result usingmore than ten different
methods. Among all methods, cell-by-cell comparison and landscape
analysis were most frequently applied in the CA model assessment;
specifically, overall accuracy and standard Kappa coefficient respec-
tively rank first and second among all metrics. The end-state assess-
ment is often criticized by modelers because it cannot adequately
reflect the modeling ability of CA models. We provide five sugges-
tions to the method selection, aiming to offer a background frame-
work for future method choices as well as urging to focus on the
assessment of input data and error propagation, procedure, quanti-
tative and spatial change, and the impact of driving factors.
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1. Introduction

Spatially explicit models (SEMs) are location-based computational approaches that can
reproduce the dynamics of geographical phenomena such as crime patterns, epidemic
spread, environmental dynamics, land-use change, and urban growth (Verburg and
Veldkamp 2001, Brown and Xie 2006, Liu et al. 2017). Cellular automata (CA) are the most
widely applied SEMs, especially for the land-use change and urban growth simulation (Wu
2002, Al-Shalabi et al. 2013, Basse et al. 2014, Clarke et al. 2018). CA models are built on
transition rules that describe the evolution of geographical phenomena (Myint and Wang
2006, Cao et al. 2016, Newland et al. 2018a). For land-use modeling, these rules are
commonly retrieved using samples of the land-use change and its driving factors as well
as based on the interactions among neighboring cells, resulting in useful prediction of
alternative scenarios (Verburg and Overmars 2009, Wang et al. 2013, Feng and Tong 2017).

Geographical CA models are stochastic if they incorporate a random component and
model runs with identical inputs produce different outputs (Vermeiren et al. 2016, Mustafa
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et al. 2018b); in contrast, they are deterministic if the random component is excluded and
model runswith identical inputs produce identical outputs (Omrani et al. 2017, Mustafa et al.
2018a). CA are affected by the definition of spatial scale, driving factors, neighborhood and
transition probability, leading to various simulation outcomes that yield different accuracies
and spatial patterns (Feng et al. 2011, Basse et al. 2014, Barreira-Gonzalez and Barros 2017).
Differences exist between the simulated results and the actual results, but in reliable CA
models these should be within acceptable limits. This requires accurate calibration by CA
parameter adjustment and rigorous assessment that examines whether models are in line
with their design objectives.

In the past two decades, several CA packages have been developed to simulate the
land-use and urban dynamics. These include UrbanSim, Dinamica EGO, SLEUTH, CLUE-S,
CA-Markov in IDRISI, FLUS, and UrbanCA (Verburg et al. 2002, Waddell 2002, Dietzel and
Clarke 2007, Liu et al. 2017, Clarke et al. 2018, Feng and Tong 2019). All the packages
include their calibration, validation and assessment procedures, and some have been
widely applied for a long time. The model application needs rigorous calibration that
adjusts the internal parameters to improve the model’s performance. In practice, CA
models are calibrated using an actual map at the initial time (T0), an actual map at the
final time (T1), and a set of driving factors; at the end of calibration, the simulated map at
time T1 is compared with the actual map at time T1 to assess the model performance
(Hagen-Zanker and Lajoie 2008, Van Vliet et al. 2011), which is also considered model
validation of verifying the truth of the modeling results (Oreskes et al. 1994, Rykiel 1996,
Oreskes 1998). Independent model validation requires the comparison between the
simulation and the actual at future time T2 (Van Vliet et al. 2011). Calibration is challen-
ging due to the complexity of urban dynamics and the complex combinations of driving
factors (Verburg et al. 2004); as a result, CA models cannot be expected to produce
outcomes that match the real world perfectly (Van Vliet et al. 2016). However, not all
publications include the model assessment procedure because CA studies differ in
purpose, method and processing (Verburg and Overmars 2009, Pérez-Molina et al. 2017).

Model assessment methods differ from article to article of CA models that incorporate
the above procedure. We categorize the most common methods into three major types
according to the aspects they aim to evaluate, with each method examining several
details. The three are:

(1) Dataset assessment that evaluates the input dataset reliability by examining the
accuracy and describes the error propagation through the modeling procedure,
providing useful insights for controlling the modeling errors.

(2) Procedure assessment that evaluates the model run efficiency, CA transition rules,
transition probability map and model sensitivity, offering useful approaches to
procedure controlling for accurate and robust modeling.

(3) Result assessment that compares both the end-state and change between the
simulated and actual results by visual inspection, statistical test, spatial pattern
analysis and cross-assessment, providing a comprehensive evaluation of the overall
model performance.

With regard to the above aspects, we summarize here the model assessment methods
used in CA publications from 1999 to 2018, a period that witnessed remarkable growth of

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 867



studies on CA modeling of land-use and urban dynamics. Through Google Scholar, we
selected publications on CA model development and application that focused on the
simulation of land-use change and urban growth. We present all CA assessment methods
and briefly comment on specific methods, aiming to demonstrate how the modelers
assessed their CA models in early work and providing a reference to select the appropriate
metrics in future work.

2. Selected publications

We searched for articles published between 1999 and 2018 from Google Scholar using three
keywords ‘cellular automata’, ‘land’ and ‘urban’ simultaneously. We retrieved a total of 347
articles, excluding CA review papers that are not related to assessment. The selected
publications include articles from 64 journals, 6 book chapters, 2 books, and 1 conference
publication collection. Figure 1 shows that the number of CA papers per year has grown
almost exponentially from 5 in 1999 to 53 in 2018. This demonstrates increasing worldwide
research interest in modeling land-use change and urban growth using CA models. Among
the 64 journals, International Journal of Geographical Information Science published themost
CA articles, followed by Computers, Environment and Urban Systems and Landscape and
Urban Planning (Figure 2). All top-10 journals published at least 8 CA-related papers while
many other journals (36) published only a single article.

3. Model assessment methods

3.1 An overview of the methods

Figure 3 summarizes the assessment methods of CA models with respect to three aspects: 1)
the input dataset, 2) themodeling procedure, and 3) the simulated results. A crisp assessment
starts with the accuracy analysis of raw dataset to provide reliable inputs for CA modeling. It

Figure 1. The proliferation of CA articles of land-use and urban modeling in the last 20 years
(1999–2018).
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then evaluates every step of the modeling procedure to control the model’s quality. Finally, it
assesses themodeling results using qualitative and quantitative methods to report themodel
performance. In practice, the model assessment and the related metrics can be performed
using the CA softwarementioned in the introduction as well as a few other software packages
such as ArcMap, GeoDa, Map Comparison Kit, PontiusMatrix26, and Fragstats.

3.2 Dataset assessment

The input dataset evaluation is the first step of the model assessment that aims to answer
how much the data are reliable to construct accurate CA models. High dataset accuracy
implies that the modeling errors may be more caused by the modeling processes instead

Figure 2. Top-10 journals published the most CA articles during 1999–2018.

Figure 3. An overview of CA model assessment methods in respect to three aspects.
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of the raw dataset. In CAmodeling, however, dataset assessment has yet to receive proper
attention considering the accuracy analysis and error propagation.

3.2.1 Accuracy analysis
The reliability of simulation results is not only affected by CAmodel components and their
relationships but also impacted by the data source accuracy (Yeh and Li 2006, Tayyebi
et al. 2014b). Great efforts have been made to assess the influences of model components
and behavior (Kocabas and Dragicevic 2006, Wu et al. 2019), but few have been made to
address the impacts of data source error (Wu et al. 2012). Accurate input initial/final land
maps and driving factor maps are impacted by the credibility of data source (Congalton
and Green 2008), the classification of remote sensing images, and the selection of spatial,
thematic, and observational scales (Foody 2002). Methods to assess the accuracy of input
land-use maps are largely limited to those (e.g. cell-by-cell comparison) widely used in
remote sensing classification. Meanwhile, evaluation of driving factors is definitely neces-
sary to construct accurate CA models; unfortunately, few have discussed this issue so far
because there are no references for the driving factors, making the evaluation very
challenging.

3.2.2 Error propagation analysis
While the uncertainty sources in CA models are very complex, the input dataset errors
may be the initial components of the uncertainties. The considerable errors in input
dataset cannot be ignored (Bachmann and Allgöwer 2002), and are needed to be carefully
analyzed because they can propagate through model components during the simulation
processes (Yeh and Li 2006). The components and processes include scaling, sampling,
neighborhood configuration, transition rules, stochastic disturbance, and threshold defi-
nition. Although these are significant factors on modeling, there is no effective method to
capture the error propagation mechanism that should provide insights for the controlling
of uncertainties and the construction of accurate CA models.

3.3 Procedure assessment

CA’s procedure denotes several key modeling processes, which include the transition rule
construction, transition probability mapping, model sensitivity test, and model running.
Each process is crucial to control the quality of CA models. The procedure assessment
provides statistics about how well transition rules fit the sampling data and how efficient
are the models in generating simulation results. End-users may focus on the quality of the
simulation results while the modelers must conduct the procedure assessment if they
want to improve the model’s quality.

3.3.1 Transition rule
Transition rules are at the core of CA models, and well-fitted rules could consequently
result in good models and accurate simulation results. The fitting performance of the
transition rules can be reflected by goodness-of-fit (R2), relative quality, and/or residual
distribution (Table 1).

The goodness-of-fit reflects how well the simulation approximates the observation in
building CA transition rules (Pijanowski et al. 2002, Jantz and Goetz 2005, Grekousis et al.
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2013, Shafizadeh-Moghadam et al. 2017), and delineates the fitting performance of the
transition rules in cases they are defined using statistical methods such as logistic regres-
sion, spatial autoregressive model and geographically weighted regression. The Akaike
information criterion (AIC) measures the relative quality of statistical models (Akaike 2011)
where a smaller AIC denotes a better model. In CA modeling, AIC was used to select the
model that best approximates the land-use dynamics from a set of competitive candidate
CA models (Feng and Tong 2017).

The residuals of transition rules measure the deviation between the predicted land
change and the actual land change based on the samples selected for model training.
Early publications have applied root-mean-square error (RMSE), standard error, mean
absolute error, fitness score, and Moran’s I to analyze the residuals (Thapa and
Murayama 2012, Crols et al. 2017, Feng et al. 2018b). In these approaches, three describe
the differences between the estimated transition probability and the actual transition
(Thapa and Murayama 2012, Crols et al. 2017), which is 0 for no-change and 1 for change.

● RMSE is the standard deviation of residuals that denote how concentrated the
samples are around the best-fitted curve;

● Standard error (SE) is the approximate standard deviation between each sample and
all candidate samples; and

● Mean absolute error (MAE) is the amount of differences between the predicted
values and the actual values.

The fitness score is a final fitness (objective) function value in heuristic algorithms that
search for the near-optimal CA parameters. The score is usually calculated as the modeling
error (RMSE, SE or MAE) of CA transition rules (Feng and Tong 2019). A smaller score
indicates a smaller error, hence better fitting performance of the CA transition rules.

Moran’s I is a measure of the spatial pattern of the model residuals. This statistic
denotes a value ranging from −1 (dispersion) to 1 (perfect correlation). Moran’s I = 0
represents that the modeling residuals are randomly distributed so that the transition
rules are not spatially biased while Moran’s I > 0 indicates possible clustering of the
modeling residuals. Geary’s C is another statistic that denotes spatial autocorrelation but
has yet to be used in assessing CA transition rules. In addition, some publications evaluate
transition rules by comparing their parameters directly.

Table 1. Statistics to evaluate the fitting performance of CA transition rules.
No. Metric Aspect Selected publications

1 R2 Goodness-of-fit (Verburg et al. 1999, Pijanowski et al. 2002, Jantz and Goetz 2005, Grekousis
et al. 2013, Mustafa et al. 2018b)

2 AIC Relative quality (Feng and Tong 2017, Feng et al. 2018b)
3 RMSE Residual (Thapa and Murayama 2012, Al-Ahmadi et al. 2016, Crols et al. 2017, Feng 2017,

Rimal et al. 2018)
4 Standard error Residual (Jafari et al. 2016, Feng et al. 2018b)
5 Mean

absolute
error

Residual (Aljoufie et al. 2013, Al-Ahmadi et al. 2016, Li et al. 2018)

6 Fitness score Residual (Blecic et al. 2015, Whitsed and Smallbone 2017, Clarke et al. 2018)
7 Moran’s I Residual (Feng and Tong 2017)

Note: These metrics are only applicable when the transition rules are built using 1) statistical regression methods and 2)
heuristic methods that optimize the regression-based CA parameters.
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3.3.2 Transition probability map
Transition probability maps are spatially visualized layers produced based on transition
rules. The relative quality of such maps can be assessed using ROC and TOC (Table 2). ROC
is a threshold-based diagnostic method to assess remote sensing classification algorithms
and spatial simulation models (Pontius and Si 2014). ROC has proven useful in assessing
the quality of transition probability maps in CA models (Tayyebi and Pijanowski 2014,
Shafizadeh-Moghadam et al. 2017). In ROC, the transition probability map of each land
category is classified using multiple thresholds to generate different duplicates (include
target and non-target classes), which are compared with the actual land-use patterns. The
comparison generates two classes: correctly simulated target cells (CPC) and simulated
target but actual non-target cells (STAN). They correspond to the percentage of CPC in the
actual target cells, and the percentage of STAN in the actual non-target cells. The area
under the ROC curve (AUC) is a summary statistic ranging from 0.5 to 1.0, where AUC = 0.5
suggests a random model and AUC = 1.0 suggests a perfect. To draw a ROC curve, only
the percentage of CPC (y-axis) and the percentage of STAN (x-axis) under multiple
thresholds are needed. AUC between 0.5–0.7 indicates a low accuracy, AUC between
0.7–0.9 indicates a moderate accuracy, and AUC > 0.9 denotes a high accuracy.

Pontius and Si (2014) modified ROC to propose TOC by providing the size of every
entry in the cross-tabulation matrix for each threshold. As a result, TOC provides all of the
information that ROC can reveal but also provides additional important information. To
draw a TOC curve, only the CPC (y-axis) and the CPC+STAN (x-axis) under multiple
thresholds are needed. TOC has now been accepted in evaluating CA-based land transi-
tion probability maps (Kamusoko and Gamba 2015, Liu et al. 2017).

3.3.3 Model sensitivity
Model sensitivity is a typical feature of CA models because they are highly affected by the
selection of spatial scale, neighborhood configuration, and probability threshold
(Wickramasuriya et al. 2009, Basse et al. 2014, Barreira-Gonzalez and Barros 2017, Xu and
Brown 2017, Xia et al. 2019). Model sensitivity analysis examines what extent are CA models
influenced by the scale, neighborhood and threshold (Jantz and Goetz 2005, Stevens and
Dragićević 2007, Mondal et al. 2017, Wu et al. 2019). To address the scale sensitivity, a multiple
scale approach was applied to quantify the degree of similarity among complex spatial
patterns (Verburg et al. 2002). A moving-window method was also applied to examine the
quality of CA models through the spatial variation on all scales (De Almeida et al. 2003).
Thematic scale (land-use category aggregation) also affect both the CA modeling and the
selection of assessment metrics substantially. Regarding this issue, Pontius and Malizia (2004)
arranged five principles that dominate the effect of thematic scale on land-use change
modeling and analysis, while Aldwaik et al. (2015) further developed a computer program
to assist the proper land-use categorization.

Table 2. ROC and TOC for evaluating the land transition probability.
No. Method Aspect Selected publications

1 ROC Relative quality (Tayyebi and Pijanowski 2014, Al-Sharif and Pradhan 2015, Rienow and Goetzke 2015,
Sakieh et al. 2015b, Goodarzi et al. 2017, Clarke et al. 2018)

2 TOC Relative quality (Pontius and Si 2014, Kamusoko and Gamba 2015, Liu et al. 2017)
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The neighborhood impact is particularly important to CAmodels because they are bottom-
up techniques depend on the interactions among nearby cells (Stevens and Dragićević 2007,
Liao et al. 2014, Barreira-Gonzalez and Barros 2017). Different neighborhood configurations
(e.g. square, circular, triangular, and irregular neighbors) can lead todifferent accuracies, spatial
patterns, and landscape structures of simulation results. Modelers therefore examined the
neighborhood effects and the related model behaviors (Moreno et al. 2009, Basse et al. 2016,
Pinto et al. 2017). Wu et al. (2012) noted that larger neighborhood size and planar shape
contribute to higher prediction accuracy because such configuration has greater ability to
resist the propagation of data source error. As compared with a conventional configuration,
a decayingCAneighborhood shows higher prediction ability for urban land, in terms of overall
accuracy and Kappa coefficient (Liao et al. 2014). Neighborhood strongly was found affecting
the simulation by measuring the neighborhood effect in irregularly-spaced CA models
(Barreira-Gonzalez and Barros 2017). The papers listed in Table 3 should improve our under-
standing of CA models and offer a justifiable selection regarding the neighborhood config-
uration for accurate land-use change and urban growth simulation.

Moreover, model results are significantly affected by the threshold that determines
whether a cell can transform its state at the next time. For the transition probability-based
CA models, this threshold is a benchmark for land transition (Tayyebi and Pijanowski 2014,
Mondal et al. 2017); whereas for the fuzzy transition rule-based CA models, the threshold is
a benchmark for factor attributes (Cao et al. 2016). Because defining an appropriate threshold
is challenging, modelers have attempted to apply multiple thresholds, dynamic thresholds,
and random thresholds to identify their optimum values (De Almeida et al. 2003, Arsanjani
et al. 2013). Many studies appliedmultiple thresholds and analyzed their effects on the model
behavior and simulation results, finally suggesting the optimum threshold. A weaker thresh-
old sensitivity is preferred because it indicates greater robustness of CA models.

3.3.4 Running performance
CA models require intensive computing resources because they use an iterative modeling
process (Guan et al. 2016), especially when the models are integrated with artificial intelli-
gence algorithms. Consequently, the run time and computational efficiency of models are
essential for their application because the run time clearly indicates the computing perfor-
mance. This leads to the development of parallel and high-performance computing CA
models in recent years (Guan et al. 2016, Xia et al. 2018).

3.4 Result assessment

Result assessment is the core of the CA model assessment because it provides modelers
and users how accurate are the simulation results and what extent the models can be

Table 3. Model sensitivity related to scale, neighborhood configuration and probability threshold.
No. Metric Aspect Selected publications

1 Scale sensitivity Scale (Verburg et al. 2002, Jantz and Goetz 2005, Kocabas and Dragicevic 2006,
Poelmans and Van Rompaey 2009, Wickramasuriya et al. 2009, Feng et al. 2011,
Rabbani et al. 2012, Carter 2018)

2 Neighborhood
sensitivity

Neighborhood (Verburg et al. 2004, Kocabas and Dragicevic 2006, Poelmans and Van
Rompaey 2009, Mantelas et al. 2012, Liao et al. 2014, Basse et al. 2016,
Barreira-Gonzalez and Barros 2017, Newland et al. 2018b)

3 Threshold
sensitivity

Threshold (Jantz et al. 2004, Moreno et al. 2008, Rabbani et al. 2012, Al-Sharif and
Pradhan 2015, Feng et al. 2016, Yin et al. 2018)
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used for decision making. The result assessment can be realized by several methods
including visual inspection, cell-by-cell map comparison, spatial pattern analysis, factor
contribution analysis, and cross-assessment. These methods delineate three aspects of
the simulation results: end-state, change, and the explanatory ability of driving factors.

3.4.1 Visual inspection
Visual inspection intuitively examines the similarities and differences in overall patterns of the
simulated results as compared with the actual results. It has been acknowledged that the
human eye is an amazingly powerful tool to detect the differences and similarities between
two or more maps across spatial scales (Straatman et al. 2004). In a case study conducted by
Straatman et al. (2004), for example, visual inspection only was applied to evaluate the
simulation results. This method is arguably the best approach to the simulation result evalua-
tion; however, it is highly subjective because visual inspectionmay be different frompeople to
people (Van Vliet et al. 2011).

3.4.2 Cell-by-cell map comparison
A cell-by-cell comparisonmethod detects whether the state of each cell matches between the
simulations and the observations, and generates a cross-tabulationmatrix with a few accuracy
and error statistics. This method is also called cell-to-cell comparison (Musa et al. 2017), pixel-
by-pixel comparison (Feng et al. 2011), and grid-by-grid comparison (Liu et al. 2008).

3.4.2.1. Cross-tabulation matrix. Cell-by-cell comparison commonly produces a cross-
tabulation (contingency) matrix that has also been called an error matrix or a confusing
matrix (Charif et al. 2017). Early publications apply the cross-tabulation matrix to demon-
strate the differences in each category between the simulated results and the actual
results (Rabbani et al. 2012, Pinto et al. 2017), intuitively showing the errors in cells,
percentages or areas. In the literature, many studies present only the cross-tabulation
matrix instead of the statistics (e.g. overall accuracy) generated from thematrix (Myint and
Wang 2006, Rabbani et al. 2012, Charif et al. 2017, Pinto et al. 2017).

The cross-tabulation matrix (Table 4) consists of J rows and C columns, a standard table for
accuracy evaluation. For remote sensing image classification, the matrix compares the classi-
fied results with the actual results (Congalton and Green 2008); for land-use simulation, the
matrix compares the simulated results with the actual results (Bozkaya et al. 2015, Feng 2017).
Each column in the matrix represents an actual category, with the column sum indicating the
total quantity; each row represents a predicted category, with the row sum indicating the total

Table 4. The cross-tabulation matrix derived from the cell-by-cell comparison.
Actual (Reference)

Simulated (Classification) L1 L2 L3 . . . LJ Row total

L1 N11 N12 N13 . . . N1J TR1
L2 N21 N22 N23 . . . N2J TR2
L3 N31 N32 N33 . . . N3J TR3
. . . . . . . . . . . . . . . . . . . . .
LJ NJ1 NJ2 NJ3 . . . NJJ TRJ
Column total TC1 TC2 TC3 . . . TCJ Sum

Note: Nij means the number of cells that are Class Li in the simulated results but Class Lj in the actual results, Tri denotes
the total cells of the simulated class Li, and TCj denotes the total cells of the actual class Lj.
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quantity. The values on the major diagonal indicate the number of cells where the predicted
(classified) class exactly matches the actual class.

In addition, the simulation ability of CA models can be explained by both the quantity and
allocation aspects that respectively reflect the quantitative differences and allocation differ-
ences between the simulated results and the actual results. According to Pontius (2000), in
Table 5, the PA row denotes the proportion of correctly classified cells in simulations with
perfect allocation ability, whichmeans all cells of category A in the simulatedmaps are cells of
same category A in the actual maps; theMA row denotes the proportion of correctly classified
cells in simulationswithmedium allocation ability, whichmeansmore cells of category A, than
would be expected by chance, in the simulatedmaps are cells of same category A in the actual
maps; the NA row denotes the proportion of correctly classified cells in simulations with no
allocation ability, which means no more cells of category A, than would be expected by
chance, in the simulatedmaps are cells of same category A in the actualmaps. Similarly, the PQ
row denotes the simulations with perfect quantity ability, which means the cell quantity of
category A in the simulated maps is the same as in the actual maps; the MQ row denotes the
simulations with medium quantity ability, which means the cell quantity of category A in the
simulatedmaps is not the same as in the actualmaps; theNQ rowdenotes simulationswith no
quantity ability, which means the cell quantity of category A in the simulated maps is zero in
the actual maps.

3.4.2.2. Kappa coefficient. Kappa coefficients evaluate how well land classification or
modeling performs excluding chance agreement (Van Vliet et al. 2011). This statistic ranges
from−1 (significantly worse than random) to 1 (perfect), but it typically lies between 0 and 1.
Gwet (2014) noted that Kappa agreement can be categorized into five different levels:
0.0 ~ 0.20 (slight agreement), 0.21 ~ 0.40 (fair agreement), 0.41 ~ 0.60 (moderate agree-
ment), 0.61 ~ 0.80 (substantial agreement), and 0.8 ~ 1.0 (almost perfect agreement). Five
variants of Kappa coefficients were defined by Pontius and Millones (2011) and have been
widely applied in model assessment: standard Kappa (Kstandard), Kappa for histogram
(Khisto), Klocation, Kappa for quantity (Kquantity), and Kappa for no ability (Kno):

Kstandard ¼ OA�NAMQ
1�NAMQ

Khisto ¼ 1�QD�NAMQ
1�NAMQ

Kquantity ¼ OA�MANQ
MAPQ�MANQ

Klocation ¼ OA�NAMQ
PAMQ�NAMQ

Kno ¼ OA�NANQ
1�NANQ

8>>>>><
>>>>>:

(1)

Table 5. Cross-tabulation matrix-based decomposition of quantity and allocation ability of CA models
(Pontius 2000). Each row denotes the proportion of correctly classified cells in simulations with
different (perfect, medium or no) allocation ability.

Allocation

Quantity

No quantity (NQ) Medium quantity (MQ) Perfect quantity (PQ)

Perfect allocation (PA) PJ
i¼1

1
J ; TCi
� � PJ

i¼1 TCi; TRið Þ 1

Medium allocation (MA) 1
J þ Klocation NQPAð Þ OA PQNAþ Klocation 1� PQNAð Þ

No allocation (NA) 1
J

PJ
i¼1ðTCi � TRiÞ

PJ
i¼1 TCið Þ2

Note: NQPA denotes the percentage of cells with no quantity agreement and perfect allocation agreement, PQNA
denotes the percentage of cells with perfect quantity agreement and no allocation agreement, OA denotes the overall
accuracy, and Klocation denotes the Kappa for location.
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Kstandard is a typical statistic that tests inter-rater reliability and is calculated as the
actual proportion correct to the expected proportion due to change (Pontius and
Millones 2011). Khisto is a function of the histogram of the matrix’s proportions of
the categories, aiming to measure the quantitative similarity of two maps in compar-
ison (Hagen-Zanker 2002). Similarly, Kquantity measures the model’s ability to des-
ignate quantity divided by the perfect ability to designate quantity (Pontius 2000).
For example, Kquantity = 1 if the predicted quantity for each category is the same as
the actual quantity. Focusing on the location assessment, Klocation measures the
model’s ability to correctly allocate cells divided by the perfect ability to allocate
cells. Kno denotes the proportion predicted correctly relative to the expected pro-
portion predicted correctly by a Null model (Pontius 2000). Van Vliet et al. (2009)
noted that these Kappa statistics consider slight displacements as errors, but such
displacements can be considered approximately correct from a modeler’s perspec-
tive. The fuzzy Kappa, i.e. Kfuzzy, calculates the fuzzy similarity between two cate-
gorical maps by ignoring the slight displacements (Hagen-Zanker 2003). Since 2007,
many studies have applied Kfuzzy to validate CA models and assess the simulation
results (Ménard and Marceau 2007, Petrov et al. 2009). Van Vliet et al. (2011) then
developed a Fuzzy Kappa simulation (Ksimulation) to evaluate the agreement
between the simulated and actual land-use change. This metric is particularly useful
in counting the cells simulated correctly from those with state change during the
modeling period (Lauf et al. 2012). Kfuzzy and Ksimulation can be calculated using
Map Comparison Kit 3 (http://mck.riks.nl). All seven Kappa statistics have been widely
applied in the assessment of geographical CA models (Table 6).

3.4.2.3. Accuracy and error. In addition to the Kappa coefficients, eleven more metrics
can be derived from the cross-tabulation matrix to delineate the modeling success or failure.
Of these, the success includes overall accuracy (OA), producer’s accuracy (PAC), user’s accuracy
(UA), chance agreement (CHA), allocation agreement (AA), and quantity agreement (QA),
while the failure includes total error (TE), omission error (OE), commission error (CE), quantity
disagreement (QD), and allocation disagreement (AD). The calculation methods are given by
(Pontius 2000, Congalton and Green 2008):

Overall accuracy: OA ¼ N11
Sum þ N22

Sum þ N33
Sum þ . . .þ NJJ

Sum

� �� 100%
Producer0s accuracy: PAC ¼ NJJ

TCJ
� 100%

User0s accuracy: UA ¼ NJJ
TRJ

� 100%
Chance agreement: CHA ¼ MIN 1

J ;OA;NAMQ
� �� 100%

Allocation agreement: AA ¼ MAX OA� NAMQð Þ; 0ð Þ � 100%
Quantity agreement: QA ¼ OA� CHA� AAð Þ � 100%
Total error: TE ¼ 1� OAð Þ � 100%
Omission error: OE ¼ 1� PAð Þ � 100%
Commission error: CE ¼ 1� UAð Þ � 100%
Quantity disagreement: QD ¼ PAPQ� PAMQð Þ � 100%
Allocation disagreement: AD ¼ TE � QDð Þ � 100%

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(2)

The diagonal cells in Table 4 are those simulated correctly and the off-diagonal cells
are those simulated erroneously. OA is calculated by dividing the number of correctly
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predicted cells (on the major diagonal) by the total of cells (Congalton and Green
2008), indicating the overall performance of a CA model or the goodness of the
result. PAC is calculated by dividing the number of cells correctly classified in each
category (on the principal diagonal) by the number of reference cells in that
category. Therefore, PAC represents how well the reference cells in each class are
predicted (Congalton and Green 2008). UA is computed by dividing the number of
cells correctly predicted in each category by the total number of pixels that are
predicted in that category. Therefore, UA represents the probability that a cell
predicted into a given category actually represents that category in reality
(Congalton and Green 2008). A few publications use different names for UA: good-
ness-of-fit (Liu et al. 2008) and accuracy (Ke et al. 2016). CHA is the percentage
agreement (between the simulated results and the actual results) that would be
expected by chance (Pontius 2000). AA and QA are attributed to the model’s correct
allocation and correct quantity prediction, respectively. QA is also called the non-
spatial metric in some publications (Bradley et al. 2016). In Table 7, we present the
eleven metrics derived from the cross-tabulation matrix, and selected many publica-
tions that apply these metrics to validate CA models.

3.4.2.4. Map overlay. The spatial overlay between the simulated results and the
actual results could reveal differences in structural conformity (Wu 2002). By eval-
uating land change, a three-map overlaying method derives the quantity and
allocation components of the simulation successes and errors (Pontius et al. 2008,
2011). The three maps are: [1] the actual map of the start year, [2] the actual map
of the end year, and [3] the predicted map of the end year. The overlay generates
four metrics, including hit, false alarm, miss, and correct rejection, which are
respectively known in the contingency matrix as true positive, false positive, false
negative and true negative values (Puertas et al. 2014). The overlay also generates
other three metrics including the figure of merit (FOM), precision, and recall (Charif
et al. 2017). These seven metrics are given by (Pontius et al. 2008):

Table 6. Seven Kappa coefficients used to validate CA models and assess the simulation results.
No. Metric Aspect Selected publications

1 Kstandard Integrated (Barredo and Demicheli 2003, Myint and Wang 2006, Kocabas and Dragicevic 2007,
Liu et al. 2008, Petrov et al. 2009, Lauf et al. 2012, Mantelas et al. 2012, Rabbani et al.
2012, Chaudhuri and Clarke 2013, Dahal and Chow 2015, Rienow and Goetzke
2015, Sakieh et al. 2015b, Feng et al. 2016, Gharbia et al. 2016, Ku 2016, Dezhkam
et al. 2017, Hyandye and Martz 2017, Xie et al. 2018)

2 Khisto Quantity (Hagen-Zanker 2002, Petrov et al. 2009, Lauf et al. 2012, Wang et al. 2013, Chaudhuri
and Clarke 2014, Rienow and Goetzke 2015, Clarke et al. 2018)

3 Klocation Location (Batisani and Yarnal 2009, Petrov et al. 2009, Lauf et al. 2012, Ahmed et al. 2013,
Chaudhuri and Clarke 2013, Chaudhuri and Clarke 2014, Rienow and Goetzke 2015,
Ku 2016, Al-Ageili et al. 2017, Hyandye and Martz 2017, Clarke et al. 2018)

4 Kquantity Quantity (Batisani and Yarnal 2009, Ahmed et al. 2013)
5 Kno No change (Batisani and Yarnal 2009, Ahmed et al. 2013, Ku 2016, Al-Ageili et al. 2017, Hyandye

and Martz 2017, Rimal et al. 2018)
6 Kfuzzy Integrated (Ménard and Marceau 2007, Petrov et al. 2009, Wickramasuriya et al. 2009, Lauf et al.

2012, Ahmed et al. 2013, Newland et al. 2018b)
7 Ksimulation Change (Van Vliet et al. 2011, Mantelas et al. 2012, Van Vliet et al. 2013b, Chaudhuri and

Clarke 2014, Blecic et al. 2015, Kamusoko and Gamba 2015, Van Vliet et al.
2016, Wang et al. 2018)
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Hit: The percentage of change predicted correctly %ð Þ
False alarm: The percentage of persistence predicted as change %ð Þ
Miss: The percentage of change predicted as persistence %ð Þ
Correct rejection: The percentage of persistence predicted correctly %ð Þ
Figure of merit FOMð Þ ¼ Hit

HitþMissþFalse alarmþACIC � 100%
Precision ¼ Hit

HitþFalse alarm � 100%
Recall ¼ Hit

HitþMiss � 100%

8>>>>>>>><
>>>>>>>>:

(3)

where ACIC indicates the actual change for a land category predicted as an incorrect land
category.

The above calculations are easily performed using GIS-based software programs such
as (e.g. ArcMap). Compared with OA, the Hit metric considers only the change and
excludes Null (no-change) successes (Pontius et al. 2008). The False alarm, Miss, and
Correct rejection (Null success) metrics are easily understood as their calculations pre-
sented in Equation (3). The total simulation errors are the sum of allocation disagreement
and quantity disagreement, and are the sum of False and Miss. FOM focuses on the
change in land-use or urban pattern rather than the continuity of land classes. To calculate
FOM, the numerator is the intersection of the actual change and the predicted change,
and the denominator is the union of the actual change and the predicted change. In
a case study, Pontius et al. (2008) noted that land models have satisfactory predictive
power when FOM is greater than 21%. Precision denotes how many changed cells are
correctly predicted through all predicted changed cells, while Recall denotes how many
changed cells are correctly predicted through all actual changed cells (Charif et al. 2017).

Table 7. Success and error metrics that focus on the end-state assessment.
No. Metric Aspect Selected publications

1 Overall accuracy Successes (Myint and Wang 2006, Moreno et al. 2008, Ahmed and Ahmed 2012, Rabbani et al.
2012, Thapa and Murayama 2012, Al-Shalabi et al. 2013, Feng et al. 2016,
Gharbia et al. 2016, Dezhkam et al. 2017, Pinto et al. 2017, Rimal et al. 2018)

2 Producer’s
accuracy

Successes (Jantz et al. 2004, Myint and Wang 2006, Mundia and Murayama 2010, Ahmed and
Ahmed 2012, Al-Shalabi et al. 2013, Feng et al. 2016, Gharbia et al. 2016, Al-
Ageili et al. 2017, Yin et al. 2018)

3 User’s accuracy Successes (Jantz et al. 2004, Myint and Wang 2006, Liu et al. 2010, Mundia and Murayama
2010, Ahmed and Ahmed 2012, Al-Shalabi et al. 2013, Feng et al. 2016, Gharbia
et al. 2016, Al-Ageili et al. 2017, Rimal et al. 2018)

4 Quantity
agreement

Successes (Batisani and Yarnal 2009, Feng et al. 2011, Zhang et al. 2011, Hyandye and Martz
2017, Mondal et al. 2017, Newland et al. 2018a)

5 Allocation
agreement

Successes (Batisani and Yarnal 2009, Hyandye and Martz 2017, Mondal et al. 2017, Newland
et al. 2018a)

6 Chance
agreement

Successes (Batisani and Yarnal 2009, Feng et al. 2011, Ahmed et al. 2013, Hyandye and Martz
2017, Mondal et al. 2017, Newland et al. 2018a)

7 Total error Error (Straatman et al. 2004, Myint and Wang 2006, Ahmed and Ahmed 2012, Mantelas
et al. 2012, Meentemeyer et al. 2013, Chaudhuri and Clarke 2014, Basse et al.
2016, Feng et al. 2016, Charif et al. 2017)

8 Commission
error

Error (Jantz et al. 2004, Dahal and Chow 2014, Feng et al. 2016, Gharbia et al. 2016, Liu
and Feng 2016)

9 Omission error Error (Jantz et al. 2004, Dahal and Chow 2014, Feng et al. 2016, Gharbia et al. 2016, Liu
and Feng 2016)

10 Quantity
disagreement

Error (Batisani and Yarnal 2009, Meentemeyer et al. 2013, Chaudhuri and Clarke 2014,
Hyandye and Martz 2017, Mondal et al. 2017, Xie et al. 2018)

11 Allocation
disagreement

Error (Batisani and Yarnal 2009, Ahmed et al. 2013, Meentemeyer et al. 2013, Chaudhuri
and Clarke 2014, Feng 2017, Feng and Tong 2017, Hyandye and Martz 2017,
Mondal et al. 2017, Xie et al. 2018)
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Table 8 lists a few representative CA publications that use the three-map overlaying
metrics in the model assessment.

3.4.3 Spatial pattern analysis
While the cross-tabulation matrix can measure the agreement between the simulated
maps and the actual maps, it does not capture their similarities in spatial patterns. For land
maps, landscape metrics can be used to characterize the landscape structures and spatial
autocorrelation statistics that measure the degree to which one feature is similar to
nearby features. As a result, the combined use of landscape metrics and spatial auto-
correlation statistics improve our understanding of the overall spatial patterns of simula-
tion results.

3.4.3.1. Spatial autocorrelation statistic. The spatial interdependence of the simulation
results is another essential aspect of model assessment. Spatial autocorrelation refers to the
potential interdependence of observations in the same region (Getis 2010). Spatial autocor-
relation statistics measure the degree of interdependence between a data point and its
adjacent neighbors. Three statistics measuring global spatial autocorrelation are in common
use, including Moran’s I, Geary’s C and Getis-Ord general G (Table 9). Among these, Moran’s
I has been most frequently applied to the comparison of spatial clustering between the
simulations and observations (Wu 2002, Aljoufie et al. 2013, Dahal and Chow 2015, Ku 2016).
Moran’s I explores the spatial distribution of land-use and urban patterns, and whether they
are clustered, dispersed or randomly distributed. This statistic ranges from −1 (dispersion) to 1
(perfect correlation), with zero denoting a random spatial pattern (Getis and Aldstadt 2010).
Moran’s I usually generates a z-score and a p-value to evaluate whether the spatial auto-
correlation is statistically significant (Bradley et al. 2016). Similar to Moran’s I, Geary’s

Table 8. Three-map overlaying comparison metrics that focus on the change assessment.
No. Metric Aspect Selected publications

1 Hit Success (Thapa and Murayama 2011, García et al. 2012, Meentemeyer et al. 2013, Kamusoko
and Gamba 2015, Liu and Feng 2016, Feng 2017, Shafizadeh-Moghadam et al. 2017,
Gounaridis et al. 2018)

2 Null success Success (Thapa and Murayama 2011, García et al. 2012, Ahmed et al. 2013, Kamusoko and
Gamba 2015, Liu and Feng 2016, Shafizadeh-Moghadam et al. 2017)

3 FOM Success (Thapa and Murayama 2011, García et al. 2012, Wang et al. 2013, Chen et al. 2014,
Kamusoko and Gamba 2015, Liu et al. 2017, Shafizadeh-Moghadam et al. 2017, Liu
et al. 2018)

4 Precision Success (Charif et al. 2017, Omrani et al. 2017)
5 Recall Success (Charif et al. 2017, Omrani et al. 2017)
6 Miss Error (Thapa and Murayama 2011, García et al. 2012, Blecic et al. 2015, Kamusoko and Gamba

2015, Feng 2017, Gounaridis et al. 2018)
7 False alarm Error (Thapa and Murayama 2011, García et al. 2012, Ahmed et al. 2013, Chen et al. 2014,

Blecic et al. 2015, Kamusoko and Gamba 2015, Feng 2017, Shafizadeh-Moghadam
et al. 2017, Gounaridis et al. 2018)

Table 9. Spatial autocorrelation statistics for validating CA models.
No. Metric Aspect Selected publications

1 Moran’s I Spatial autocorrelation (Wu 2002, Aljoufie et al. 2013, Dahal and Chow 2015, Bradley et al. 2016,
Ku 2016, Du et al. 2018)

2 Geary’s C Spatial autocorrelation (Bradley et al. 2016)
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C measures spatial autocorrelation by analyzing the interdependence among geographic
observations based on a spatial weight matrix (Anselin 2019). Geary’s C has a positive value
ranging from 0 to 2, with C = 1 denoting no spatial autocorrelation (random distribution).
Moreover, C < 1 denotes a positive spatial autocorrelation (nearby observations are similar),
and C > 1 denotes a negative spatial autocorrelation (nearby observations are dissimilar). To
the best of our knowledge, Getis-Ord general G has not beenused in the CAmodel evaluation.
In practice, each category of the simulated and actual maps is assigned an integer where the
spatial autocorrelation statistics can be readily computed using software such as ArcMap and
GeoDa.

3.4.3.2. Landscape metric. To quantify model performance across landscapes and land-
use categories (Brown et al. 2005), modelers have applied a set of landscape metrics in the
result assessment (Whitsed and Smallbone 2017). These measures have usually been
applied to validate CAmodels regarding the aggregate of patches, classes and landscapes
(Soares-Filho et al. 2002, Herold et al. 2005, Chaudhuri and Clarke 2014, Sakieh and
Salmanmahiny 2016). Landscape metrics are categorized as area-edge, shape, aggrega-
tion, or diversity. The most frequently applied metrics are presented in Table 10, with
a few selected publications. According to Mcgarigal (2014), area-edge metrics reflect the
size and edge, shape metrics reflect the complexity, aggregation metrics refer to the
spatial aggregation, and diversity metrics quantify the land cover diversity. Detailed
explanations and calculations of these landscape metrics can be found in the Fragstats
4.2 manual (www.umass.edu/landeco).

Many other landscape metrics were applied to assess various aspects of the
simulation results, with each metric used in at least one article. For example, pub-
lications have applied landscape metrics such as patch size standard deviation
(Mitsova et al. 2011), Shannon’s evenness index (Wang and Li 2011), mean patch
edge and area-weighted mean shape index (Mitsova et al. 2011), mean radius of
gyration (Aguilera et al. 2011), interspersion and juxtaposition index (Zhou et al.
2012), landscape division index (Liu and Feng 2012), percentage of like adjacencies
(Chowdhury and Maithani 2014), mean parameter-area ratio (Li et al. 2015), average-
perimeter-to-area-ratio (Bradley et al. 2016), landscape cohesion index (Musa et al.
2017), and coefficient of variation (Kocabas and Dragicevic 2007). Modelers have also
applied a few other indices modified based on landscape metrics to assess the
compactness and shape complexity of the simulated results. These include urban
compactness, (radial) fractal dimension (differs from but relates to PAFRAC), entropy,
and cluster size (Soares-Filho et al. 2002, Van Vliet et al. 2009, Chowdhury and
Maithani 2014, Hewitt and Diaz-Pacheco 2017). Typically, the modified compactness
index (CI) to delineate the urban pattern can be given by (Li et al. 2012):

CI ¼
ffiffiffi
S

p

P
� 10000 (4)

where S is the total urban area (in square meters) and P is the perimeter (in meters) of all
urban patches. CI ranges from 0 to 2,821 with a value related to a stronger compact shape,
where 2,821 denotes the most compact shape (i.e. circle).
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To quantify the similarity of the compared maps considering the combined effects of
multiple landscape metrics, a relative error index (REI) was proposed as (Sakieh and
Salmanmahiny 2016):

REI ¼ Ma�Ms

Ma

� �
� 100 (5)

where Ma is a landscape metric of the actual map and Ms is the same landscape metric of
the simulated map.

Each metric above reports a single value that indicates the overall landscape
pattern of each study area. For the spatial assessment, however, moving window-
based analysis of spatial variation in landscape patterns is particularly helpful to

Table 10. Landscape metrics used to evaluate the spatial patterns of simulations.
No. Metric Aspect Selected publications

1 Percentage of landscape
(PLAND)

Area-edge (Herold et al. 2005, Ménard and Marceau 2007, Moreno et al. 2008,
Mundia and Murayama 2010, Aguilera et al. 2011, Chaudhuri
and Clarke 2013, Sakieh et al. 2015b, Dezhkam et al. 2017,
Goodarzi et al. 2017)

2 Edge density (ED) Area-edge (Liu et al. 2010, Mitsova et al. 2011, Chaudhuri and Clarke 2013,
Sakieh et al. 2015a, Sakieh and Salmanmahiny 2016, Dezhkam
et al. 2017)

3 Total edge (TE) Area-edge (Barredo and Demicheli 2003, Barredo et al. 2004, Kocabas and
Dragicevic 2007, Ménard and Marceau 2007, Mitsova et al. 2011,
Whitsed and Smallbone 2017)

4 Mean patch area (AREA_MN) Area-edge (Barredo and Demicheli 2003, Kocabas and Dragicevic 2007,
Aguilera et al. 2011, Mitsova et al. 2011, Meentemeyer et al.
2013, Dahal and Chow 2015, Li et al. 2015, Sakieh et al. 2015b,
Musa et al. 2017, Alaei moghadam et al. 2018)

5 Perimeter-area fractal
dimension (PAFRAC)

Shape (Herold et al. 2005, Liu et al. 2010, Chaudhuri and Clarke 2013, Van
Vliet et al. 2013b, Li et al. 2015, Sakieh et al. 2015a, Whitsed and
Smallbone 2017)

6 Mean patch shape index
(SHPAE_MN)

Shape (Li et al. 2008, Aguilera et al. 2011, Lin et al. 2011, Dahal and Chow
2014)

7 Number of patches (NP) Aggregation (Herold et al. 2005, Kocabas and Dragicevic 2007, Moreno et al.
2008, Liu et al. 2010, Aguilera et al. 2011, Mitsova et al. 2011,
García et al. 2012, Chaudhuri and Clarke 2013, Dahal and Chow
2015, Sakieh et al. 2015b, Bradley et al. 2016, Dezhkam et al.
2017, Alaei moghadam et al. 2018)

8 Patch density (PD) Aggregation (Wang and Li 2011, Liu and Feng 2012, Feng and Tong 2017)
9 Largest patch index (LPI) Aggregation (Herold et al. 2005, Liu et al. 2008, García et al. 2012, Li et al. 2015,

Sakieh and Salmanmahiny 2016, Padmanaban et al. 2017)
10 Landscape shape index (LSI) Aggregation (Barredo and Demicheli 2003, Liu et al. 2010, Wang and Li 2011,

Chaudhuri and Clarke 2013, Chowdhury and Maithani 2014,
Sakieh and Salmanmahiny 2016, Dezhkam et al. 2017)

11 Aggregation index (AI) Aggregation (Li et al. 2008, Liu et al. 2010, Wang and Li 2011, Feng and Tong
2017)

12 Mean Euclidean Nearest
Neighbor Distance
(ENN_MN)

Aggregation (Ménard and Marceau 2007, Li et al. 2008, Aguilera et al. 2011,
García et al. 2012, Sakieh and Salmanmahiny 2016, Dezhkam
et al. 2017, Goodarzi et al. 2017, Alaei moghadam et al. 2018)

13 Contagion index (CONTAG) Aggregation (Soares-Filho et al. 2002, Herold et al. 2005, Liu et al. 2008,
Chaudhuri and Clarke 2013)

14 Splitting index (SPLIT) Aggregation (Barredo and Demicheli 2003, Barredo et al. 2004, Sakieh and
Salmanmahiny 2016)

15 Clumpiness index (CLUMPY) Aggregation (Hewitt and Diaz-Pacheco 2017, Padmanaban et al. 2017, Feng
et al. 2018a)

16 Diversity index
(SHDI and SIDI)

Diversity (Barredo and Demicheli 2003, Mitsova et al. 2011, Feng et al.
2018a)
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evaluate the simulation results produced by CA models (Hagen-Zanker 2006, 2016,
Hagen-Zanker and Martens 2008).

3.4.4 Factor contribution analysis
The cell-by-cell comparison and spatial analysis focus on the assessment of the end-state
and change, where they have limitations because the assessment does not consider the
relationships between the simulation results and their driving factors. From the factor
perspective, however, we need to be clear about how much the factors contribute to the
simulations. On this regard, Feng et al. (2019) proposed a novel method by using
a generalized additive model (GAM) to quantify the factors’ contribution to simulation
results. A standard GAM can be given by (Feng et al. 2019):

Chg uð Þ ¼ a0 þ SF1 x1ð Þ þ . . . þ SFp xp
� �

(6)

where Chg uð Þ represents the land change between the initial map and the simulated
map, a0 is a constant, SFi xið Þ is a smooth function that links Chg uð Þ and a selected factor
(xi), and p is the number of factors.

Using GAM, the contribution of each factor can be explained by the explained deviance
(ED) and AIC, where a higher ED or a lower AIC denotes stronger ability of the factor to
explain the simulated results, hence the better performance of the CA models. This
method not only can examine the past land patterns but also can evaluate the future
land scenarios.

3.4.5 Cross-assessment
Cross-assessment compares a proposed model with other known models by assessing
their simulation results under the same conditions. On this regard, the assessment
methods described above serve as the criteria for selecting a better model. Among the
known CA models, the logistic regression-based model has been selected as the bench-
mark in numerous publications to compare with other models (Lin et al. 2011, Feng 2017).
Here, we summarize benchmark models in the absence of similar bottom-up processes
like CA (Pontius and Malanson 2005, Hagen-Zanker and Lajoie 2008), and these models
are considered as the references for the cross-assessment.

3.4.3.1. A null model. The first type of benchmark models is the Null model that
predicts no land change. It uses the actual map at the start time as the simulation map
at the end time, then compares the accuracy and error between the Null model and the
proposed CA models (Pontius and Malanson 2005). Pontius et al. (2008) defined a Null
resolution as when the accuracy of a CA model equals that of the Null model, but is less
[more] accurate at a finer [coarser] resolution. The authors then applied the Null resolution
and FOM to compare 13 different CA models, facilitating the communication among
modelers. The Null model has been used as a benchmark to assess CA models in many
applications of land-use change and urban growth simulation (Lauf et al. 2012, Thapa and
Murayama 2012, Van Vliet et al. 2013b, Rienow and Goetzke 2015, Bradley et al. 2016,
Newland et al. 2018b).
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3.4.3.2. Neutral models. While there are diverse metrics, the model performance they
indicated cannot be mutually comparable between different CA models in different study
areas; moreover, it is not clear about what extent is the model performance ascribed to the
modeling processes (Hagen-Zanker and Lajoie 2008). Also, it has been acknowledged that
CA models yielding high overall accuracy may not be good enough if the land state at the
end time of simulation is mostly identical to the initial actual state (Hagen-Zanker and Lajoie
2008, Pontius et al. 2011). This has been confirmed by Feng et al. (2018a) in a most recent
study of urban growth where a higher overall simulation accuracy may be related to a lower
FOM because the study area has largely maintained its original ecological landscape. To
provide the reference for cross-assessment, Hagen-Zanker and Lajoie (2008) proposed
Neutral models that can generate land patterns without considering specific land change
processes. These Neutral models use the same boundary conditions and constraints that are
used in the evaluated CA models. Similar to the Null model, the Neutral models tend to
maintain the initial land state; however, differences exist because the Neutral models are
stochastic to modify the initial state to meet the predefined constraints. The Neutral models
as benchmarks have been applied to the assessment of CA-based simulations and projec-
tions (Soares-Filho et al. 2013, Wang and Marceau 2013, Hewitt and Diaz-Pacheco 2017,
Williams et al. 2017), and have been programmed in software for semi-automatic calibration
of CA models (He et al. 2018, Newland et al. 2018b).

3.5 Frequency analysis

3.5.1 Change in methodology over time
While the assessment is crucial in CAmodeling, not all publications include this procedure
in simulating land-use change and urban growth. Among all 347 articles we reviewed, 37
(~11%) do not include the model assessment (Dietzel and Clarke 2004, Stevens and
Dragićević 2007, Verburg and Overmars 2009, Arsanjani et al. 2013). Some publications
centralize the development of new modeling methods and prototype models (Barreira-
GonzaLez et al. 2015, De Noronha Vaz and Nijkamp 2015), while others centralize the
future scenario prediction under different development strategies where the model
assessment is not their focus (Pérez-Molina et al. 2017). Although most CA models are
built on a gridded space, there are a few CA models based on vector data where
assessment is technically challenging (Stevens and Dragićević 2007, Stevens et al. 2007).

Table 11 shows that over the past 20 years, the methods used for CA model assessment
were increasingly diverse, with more specific metrics used in each paper; however, the
assessment of data and running performance yet to receive more attention. The 31
articles published from 1999 to 2003 applied 26 metrics in seven categories, with an
average of 0.8 metrics for each article. The three-map overlaying method was not
proposed until the 2000s, such that it could not appear in articles published earlier.
From 2004 to 2008, the 44 publications used 81 specific metrics in eight categories,
with an average of 1.8 metrics for each article. The last decade (2008–2017) witnessed
a proliferation of CA papers and corresponding assessment metrics, with about 3 assess-
ment metrics per article. This indicates that model assessment is increasingly a concern of
modelers, and that further research of model assessment could have a higher scientific
and practical benefit.
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3.5.2 The top-20 most common metrics
Figure 4 shows the top-20 metrics most frequently applied in the CA model assessment.
Of these, seven are cell-by-cell comparisons, five are landscape metrics, four are three-
map overlays, and the remaining four are ROC, neighborhood sensitivity, Null/neutral
model, and Moran’s I. This illustrates that the cell-by-cell comparison and landscape
analysis are the twomost applied categories for CA model assessment. Meanwhile, overall
accuracy and Kstandard are the most frequently applied metrics, and half of the papers
that use these two metrics report the UA, PAC, AD, and QD metrics. This shows that
reporting the total error is not necessary when OA is presented. NP related to landscape
pattern ranks third and is the most attractive landscape metric to assess the simulation
results. Hit is the most popular among the three-map overlays, suggesting that when
reporting Hit, not all papers simultaneously used FOM, False and Miss in the same
category.

Table 11. Application frequency of assessment methods in CA modeling in the past two decades.
Period

Category 1999–2003 2004–2008 2009–2013 2014–2018
Total frequency of

use

Procedure assessment
Transition rule assessment 3 4 9 43 59
Transition map assessment (ROC & TOC) 0 2 3 34 39
Model sensitivity 2 7 18 29 56

Result assessment
Cross-tabulation matrix 2 18 78 163 261
Three-map overlaying 0 0 14 93 107
Kappa agreement 3 11 60 114 188
Spatial autocorrelation analysis 1 2 1 12 16
Landscape analysis 13 35 67 124 239
Factor contribution analysis 0 0 0 1 1
Null/neutral model 1 2 1 13 17

Total frequency of use 25 81 251 626 983
Total articles 31 44 93 179 347
Metric per article 0.8 1.8 2.7 3.5

Figure 4. The top-20 metrics most frequently used in CA model assessment.
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4. Discussion

4.1 End-state versus change

CA models are aimed at the accurate modeling of land-use and urban patterns by
capturing their changes over time. However, the model assessment may likely show
contradictions between the end-state and the change. Pontius et al. (2008) acknowledged
that model performance strongly correlates to the magnitude of change across the
simulation period, and Hagen-Zanker and Lajoie (2008) gave an example to show that
a high end-state accuracy may be related to a very low change accuracy. This has been
further proved by Feng et al. (2018a) in a case study of urban growth in a region within
one-hour high-speed rail distance from Shanghai. The authors also showed that the same
CA model may likely yield varying accuracies and errors of urban growth in different
regions; as a result, there are no benchmark of metric values to assess the model
performance. However, we suggest change assessment instead of end-state assessment
to report the quality of the evaluated CA models. The commonly applied change metrics
include Hit, Miss, False and FOM (Pontius et al. 2008).

4.2 Further evaluation of Kappa

While Kstandard has been widely applied in the assessment of CA modeling as demon-
strated by our frequency analysis, this metric fails to distinguish between quantity error
and location error (Pontius 2000). As such, Kappa variants such as Kquantity and Klocation
were proposed to overcome the shortcomings. In the literature, these metrics would be
used with very different names; for example, the error rate metric (Yang et al. 2012) to
assess the simulation ability of area match is substantially has similar performance as
Kquantity. While Pontius and Millones (2011) noted that all these Kappa coefficients are
not useful and suggested using QD and AD in land model assessment, and we found that
QD is perfectly related to Kquantity because their sum in percentage is equal to 100%.

Most recent work from McGarigal et al. (2018) shows that CA models mainly provide
useful comparisons among alternative scenarios, thus high accurate overall patterns
instead of exact match in cells can provide useful decision references for formulating
urban planning regulations and urban macroeconomic development strategies. To com-
pare the similarity of categorical maps, a Fuzzy approach (Kfuzzy) is strongly recom-
mended to correct the cell-average similarity (Hagen-Zanker 2003). These authors then
proposed an improved Kfuzzy that accounts for spatial autocorrelation (Hagen-Zanker
2009) and a Ksimulation approach to assesses land-use transitions by examining their
nuance (Van Vliet et al. 2013a). In terms of change assessment, the Ksimulation is an
appropriate choice except the Hit, Miss, False and FOM metrics.

4.3 Other points of assessment metrics

Except for the transition rule assessment, the goodness-of-fit (R2) have been widely used
to other aspects of CA modeling. These include the evaluation of model sensitivity and
fitting performance between the simulations and the observations. For example, mode-
lers usually apply optimum SLEUTH metrics (OSMs) to assess the results generated by
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the SLEUTH models (Jantz et al. 2004, Dietzel and Clarke 2007, Onsted and Clarke 2012,
Al-Shalabi et al. 2013, Chaudhuri and Clarke 2014). OSMs compare the simulated and
actual maps in terms of pattern, cluster, shape, edge, quantity and location. In these
metrics, modelers use the least squares regression (LSR) score to denote the goodness-
of-fit when fitting two items (e.g. urban area) between the simulated results and the
actual results (Dietzel and Clarke 2007). Clearly, the metrics in OSMs are directly related
to other measures such as landscape metrics to examine the similar aspects. For
instance, OSMs use ‘% urban’ to examine the percentage of the simulated and actual
urban area, which can also be measured using class-level PLAND (percentage of land-
scape). The simulated urban percent is directly divided by actual urban percent, leading
to a new metric called percent correct match (PCM) (Al-Sharif and Pradhan 2015,
Shafizadeh-Moghadam et al. 2017). The annual growth rate between the simulated
and actual results are also compared by a division operation (Wang and Murayama
2017). In other studies, cross-correlation (CC) uses a way similar to goodness-of-fit to
assess the correlation between the simulated results and the actual results (Guan et al.
2005, Kocabas and Dragicevic 2007, Barreira-GonzaLez et al. 2015). These metrics enrich
the assessment techniques of CA models, but they depict features that can be measured
using previously mentioned methods (Tayyebi et al. 2014a). On this regard, metrics such
as OSMs, PCM and CC can be substituted by metrics derived from cell-by-cell compar-
ison and spatial pattern analysis.

A few other metrics have multiple roles in the CA model assessment. An example of
this kind is the spatial autocorrelation statistics that include Moran’s I, Geary’s C and
General G. These statistics can be applied to examine clusters of the residuals and
compare the clusters between the simulated results and the actual results. In addition,
many landscape metrics in Fragstats are loosely correlated in describing the spatial
clustering (Peng et al. 2010), and these may be correlated to spatial autocorrelation
statistics as well (Fan and Myint 2014).

Assessment methods are substantially affected by the generalization of reality and the
spatial scales that CA models rely on (Brown et al. 2005). In map comparison, Costanza
(1989) noted that the assessment at one scale is not sufficient to delineate the similarity of
complex landscape patterns. For example, the scale selection could affect the goodness-
of-fit analysis, spatial autocorrelation, spatial clustering, Null/Neutral model-based cross-
assessment, and so on (Hagen-Zanker and Lajoie 2008, Pontius et al. 2008). Multiscale
analysis or the test of the scale effect is needed for the reliable assessment of CA models.

4.4 Suggestions to method selection

Our review provides a reference frame for choosing appropriate metrics for future work,
and we have a few suggestions as follows.

(1) We strongly recommend a proper evaluation of the input dataset used for model
calibration because data source errors and their propagation through the CA model-
ing can substantially affect the simulation results (Wu et al. 2012, Grinblat et al. 2016).

(2) The procedure assessment is of particularly significant to CA modeling, and mode-
lers should pay more attention to this issue because it substantially influences the
model performance hence the simulation results. However, for example, it is
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challenging for assessing the transition rules derived using black-box methods
such as neural networks and deep learning (Omrani et al. 2017, Qiao et al. 2017),
which do not produce detailed fitting reports. When using black-box methods to
build CA models, we suggest using ROC and TOC (c.f. 3.3.2 Transition probability
map) to evaluate the transition probability maps.

(3) While the end-state assessment is frequently criticized in CA modeling, metrics
such as OA and Kstandard should not be discarded because they can provide an
overview of the overall agreement between the simulated results and the actual
results. The same CA model may produce a lower end-state accuracy for a region
but a higher end-state accuracy for another region just because the former region
experienced fewer changes than the latter instead of the predictive ability the
model itself. As such, change assessment metrics such as Hit, Miss, False alarms and
Ksimulation are highly recommended because these more properly describe the
simulation performance of a model for a specific region. While Ksimulation has
been applied in many publications (Hagen-Zanker and Martens 2008, Van Vliet
et al. 2011), it should be received more attention from the community of CA
modeling (c.f. the subsection of Kappa coefficient).

(4) The spatial autocorrelation and landscape analysis to date have been majorly
applied to the end-state assessment, but they can also be used to evaluate the
modeling change. This should be able to provide more insights into the pattern-
level change other than the cell-level change.

(5) The result evaluation using driving factors (Feng et al. 2019) is a promisingmethod that
provides a new perspective for model calibration and validation, and can be used for
credibility assessment of predicted future scenarios of land-use and urban patterns.

5. Conclusions

We summarized 69 specific metrics in four aspects that have been applied in the CA
model assessment during the past 20 years. Our review shows that 89% of the selected
publications (347) used an assessment procedure to evaluate the model performance, but
no publication applied all these metrics because some of these are highly correlated. In
addition, it is not possible for a single work to comprehensively evaluate all aspects of the
models and the simulation results. We found that, during the past two decades, more
scientists are working on the model development and application as demonstrated by the
increasing CA publications, and the methods for CA model assessment are in growing
diversity. Among these, the cell-by-cell comparison and landscape analysis are the most
frequently applied methods for model assessment. While some of the metrics are widely
used, they are criticized by modelers and should be not as useful as a few other metrics
that have been proposed in the last decade. We provided five suggestions to method
selection in this study, urging to focus on the assessment of input dataset and error
propagation, modeling procedure, quantitative and spatial change, and the impact of
driving factors.

While existing methods and metrics have their abilities to evaluate model perfor-
mance, there are some other aspects (i.e. future research directions) that need to be
more fully explored. These are: (1) to develop proper metrics for assessing the accuracy of
driving factors because the data source accuracy significantly affects the model
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performance and credibility; 2) to explore how the CA models lead to uncertainties and
how these uncertainties propagate during modeling; 3) to develop new indicators to
assess the applicability of simulation results; and 4) to propose suitable metrics to asses
large-scale (e.g. global and continental) land-use change simulations for which existing
methods such as cell-by-cell comparison and landscape analysis are not most applicable.
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Appendix. Definition of acronyms

AA: Allocation agreement
ACIC: the actual change for a land category predicted as an incorrect land category
AD: Allocation disagreement
AIC: Akaike information criterion
AUC: Area under the ROC curve
CA: Cellular automata
CC: Cross-correlation
CE: Commission error
CHA: chance agreement
CI: Compactness index
CPC: Correctly simulated target cells
ED: Explained deviance
FLUS: Future land-use simulation
FOM: Figure of merit
GAM: Generalized additive model
Kfuzzy: fuzzy Kappa
Khisto: Kappa for histogram
Klocation: Kappa for location
Kno: Kappa for no ability
Kquantity: Kappa for quantity
Kstandard: Standard Kappa
LSR: Least squares regression
MA: Medium allocation
MAE: Mean absolute error
MQ: Medium quantity
NA: No allocation
NQ: No quantity
OA: Overall accuracy
OE: omission error
OQM: Other quantitative measures
OSM: Optimum SLEUTH metric
PA: Perfect allocation
PAC: Producer’s accuracy
PCM: Percent correct match
PQ: Perfect quantity
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QA: quantity agreement
QD: Quantity disagreement
REI: Relative error index
RMSE: Root-mean-square error
ROC: Relative operating characteristic
SE: Standard error
SEM: Spatially explicit model
STAN: Simulated target but actual non-target cells
TE: Total error
TOC: Total operating characteristic
UA: User’s accuracy
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